RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. MID SEMESTER EXAMINATION, SEPTEMBER 2012 THIRD YEAR

Date : 13/09/2012

Time : 2 pm – 4 pm

MATHEMATICS (Honours)

Paper: VI

Full Marks: 50

[Use separate answer-books for each group]

Group-A

Answer any three of the following:

3x5

1. a) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous at $v_0 \in \mathbb{R}^n$. Show that f is locally bounded at v_0 .

2

3

b) Let f(x,y) have continuous first order partial derivatives. Prove that the directional derivative $\frac{\partial f}{\partial \xi_{\alpha}}$ is a linear combination of $\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}$.

2. Let U be an open subset of \mathbb{R}^n and let $f: U \to \mathbb{R}^m$ be a function defined by $f(v) = (f_1(v), f_2(v), \dots, f_m(v))$ when each $f_i: U \to \mathbb{R}$, $1 \le i \le m$. Let f be differentiable at a point v of U. Prove that each $\frac{\partial f_i}{\partial x_i}(v)$ exists, $1 \le i \le m, 1 \le j \le n$.

5

3. Let $f: S \to \mathbb{R}$ where S is an open subset of \mathbb{R}^2 and let $(a,b) \in S$. Let (i) f_x and f_y exist in some neighbourhood of (a, b) and let (ii) $f_{xy}(x,y)$ is continuous at (a, b). Prove that $f_{xy}(a,b)$ exists and $f_{cy}(a,b) = f_{yx}(a,b)$.

5

4. Transform $Z_{xx} - 2Z_{xy} + Z_{yy} = 0$, taking u = x + y, $v = \frac{y}{x}$ for new independent variables and $w = \frac{z}{x}$ for the new function w = w(u, v).

5

5. If u is a homogeneous function of degree $n(\neq 1)$ in x, y, z and if $u = f(\xi, \eta, \rho)$ where $\xi = u_x$, $\eta = u_y$, $\rho = u_z$ and if all concerned second order partial derivatives are continuous, prove that $\xi \frac{\partial u}{\partial \xi} + \eta \frac{\partial u}{\partial \rho} + \rho \frac{\partial u}{\partial \rho} = \frac{nu}{n-1}$.

5

6. Let
$$u = f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, x^2 + y^2 \neq 0\\ 0, x^2 + y^2 = 0 \end{cases}$$

Group-B 1x5 Answer any one question: *POP'* is a variable diameter of the ellipse z = 0, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, and a circle is described in the plane PP'ZZ' on PP' as diameter. Prove that as PP' varies, the circle generates the surface $\left(x^2 + y^2 + z^2\right)\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) = x^2 + y^2$. 5 The enveloping cone of the surface $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is cut by the plane z = 0 in 5 a parabola. Show that its vertex lies on the surface $z = \pm c$. 1x5 Answer any one question: If $\vec{A} = (4xy - 3x^2z^2)\vec{l} + 2x^2\vec{j} - 2x^3z\vec{k}$, prove that $\int_C \vec{A} \cdot d\vec{r}$ is independent of the curve joining two given points. Show that there is a differentiable function such that $\vec{A} = \vec{\nabla} \phi$ and find it. Evaluate $\iint \vec{A} \cdot \vec{n} dS$, if $\vec{A} = y\vec{i} + 2x\vec{j} - z\vec{k}$ and S is the surface of the plane 2x + y = 6 in the first octant cut off by the plane z = 4. Group-C Answer any one from Q. 9, 10 and Q.11 Define momental ellipsoid at a point. Show that the momental ellipsoid at a 9. point on the rim of a hemisphere is $2x^2 + 7(y^2 + z^2) - \frac{15}{4}zx = \text{constant}$. 2+6 A rod of length 2a is suspended by a string, of length 1 attached to one end. If the string and the rod revolve about the vertical with uniform angular velocity and their inclinations to the vertical be θ and ϕ respectively, then show that $\frac{3I}{a} = \frac{(4\tan\theta - 3\tan\varphi)\sin\varphi}{(\tan\varphi - \tan\theta)\sin\theta}$ 7 Define the terms centre of suspension, centre of oscillation of a compound 10. a) pendulum. A solid homogeneous cone of height h and semi-vertical angle α oscillates about a diameter of its base. Show that the length of the simple equivalent pendulum is $\frac{h}{5}(2+3\tan^2\alpha)$. 3+5 - 2 -

Let a new variable t be introduced by setting x = t, y = t. Show that at t = 0,

2 + 3

 $\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$ does not hold. Explain why the chain rule fails here.

b) A wire is in the form of a semi-circle of radius a. Show that, at an end of its diameter, the principal axes in its plane are inclined to the diameter at angles $\frac{1}{2} \tan^{-1} \frac{4}{\pi}$ and $\frac{\pi}{2} + \frac{1}{2} \tan^{-1} \frac{4}{\pi}$.

7

11. Answer any two questions:

5+5

- a) If the planet were suddenly stopped in its orbit, supposed circular, then show that it would fall into the sun in a time which is $\frac{\sqrt{2}}{8}$ times the period of the planet's revolution.
- b) Prove that for a parabolic orbit, the time taken to move from the vertex to a point distant r from the focus is $\frac{1}{3\sqrt{\mu}}(r+l)\sqrt{2r-l}$, where 2l is the latus rectum.
- c) A body is describing an ellipse of eccentricity e under the action of a force tending to a focus. If the velocity of the body be doubled when it is at one end of the minor axis, then prove that the new path is a hyperbola of eccentricity $\sqrt{9-8e^2}$.